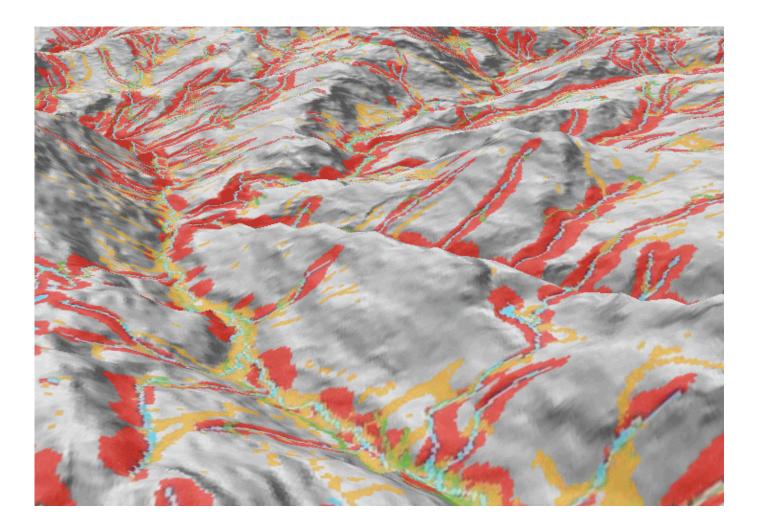


Source Area Connectivity in Parsimonious Model Structures

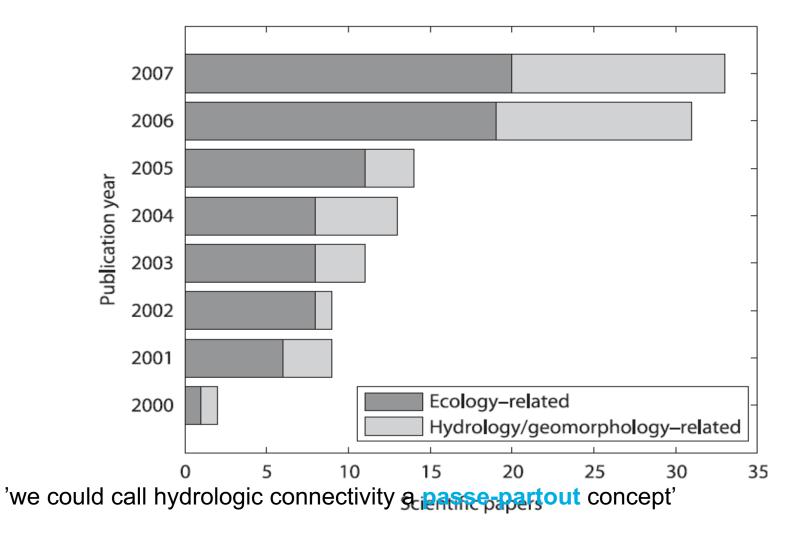
Klemens Rosin, Markus Weiler, Georg Jost


 Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

 Fahnenbergplatz
 hydrology@hydrology.uni-freiburg.de

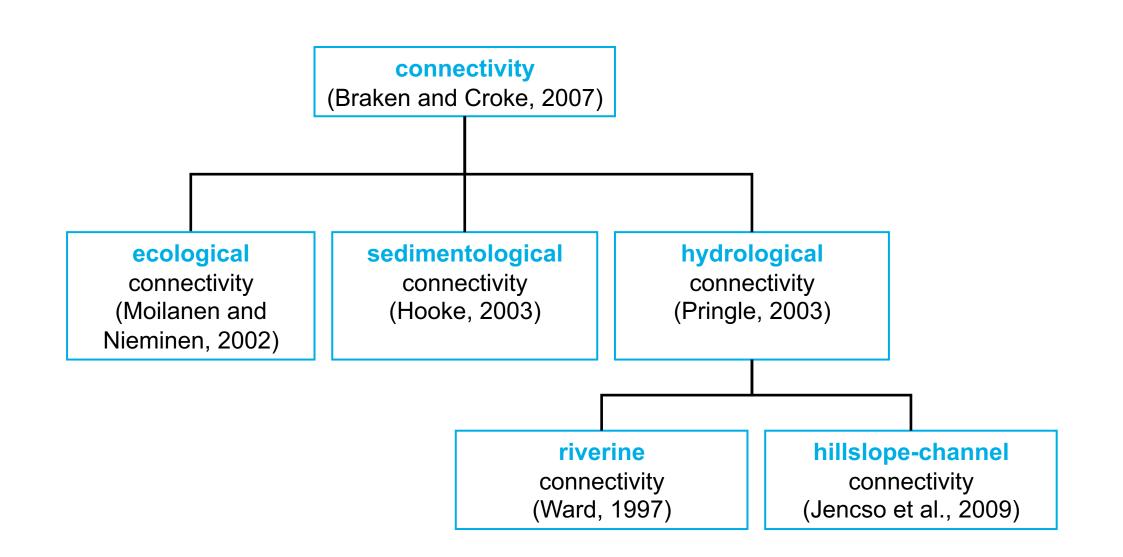
 D-79098 Freiburg
 www.hydro.uni-freiburg.de

Starting Point


Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

FREIBURG HYDROLOGIE


Ali and Roy (2009):

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg Fahnenbergplatz hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

D-79098 Freiburg

Fahnenbergplatz D-79098 Freiburg

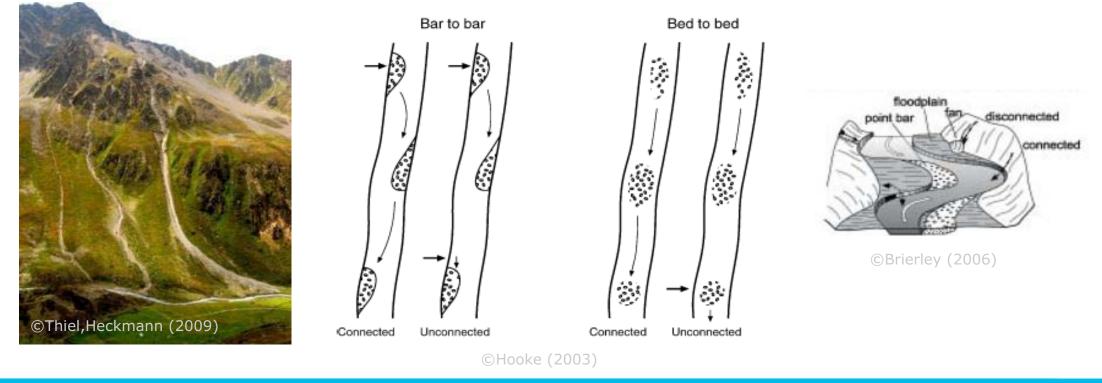
hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

FREIBURG

- Conceptual models
 - Habitat-corridor connectivity (Andreassen et al., 1998)
 - Pathd between nodes (linear connectivity, Urban and Keitt, 2001)
 - Mosaic-stepping stones (Bennett, 2003)
 - Patch-matrix model (Toeyra & Pietroniro, 2005)
 - Legacy effect (=delayed reaction; Helm et al., 2006)
- Functional characteristics: Connectivity is often
 - Directed (upstream/downstream; Glatzel, 2009)
 - Species/process specific (Habel, 2006)

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

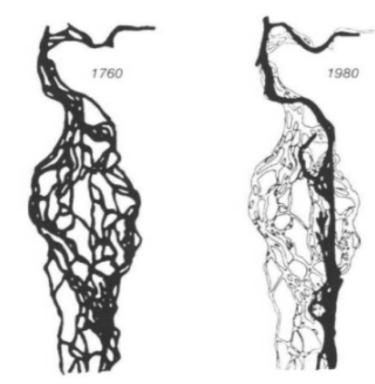
Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de


FREIBURG

Sedimentological Connectivity

Concepts

- Mobilization/transport of solutes/dissolved matter (Hooke, 2003)
- Spatial/temporal dynamics across scales (Brierley et al., 2006)
- Flow dynamics/grain size dependence (Fryirs et al., 2007)
- Legacy effect (between storms; connect/react; Thiel and Heckmann, 2009)


Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

FREIBURG

Riverine Connectivity

- Riverine connectivity
 - Water, solutes, organisms (Wiens, 2002)
 - Connectivity proxies (alkalinity, temperature; Tetzlaff et al., 2007)
 - Impact of flood dynamics on ecology (Danube; Hohensinner et al., 2005)

©Ward (1997)

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

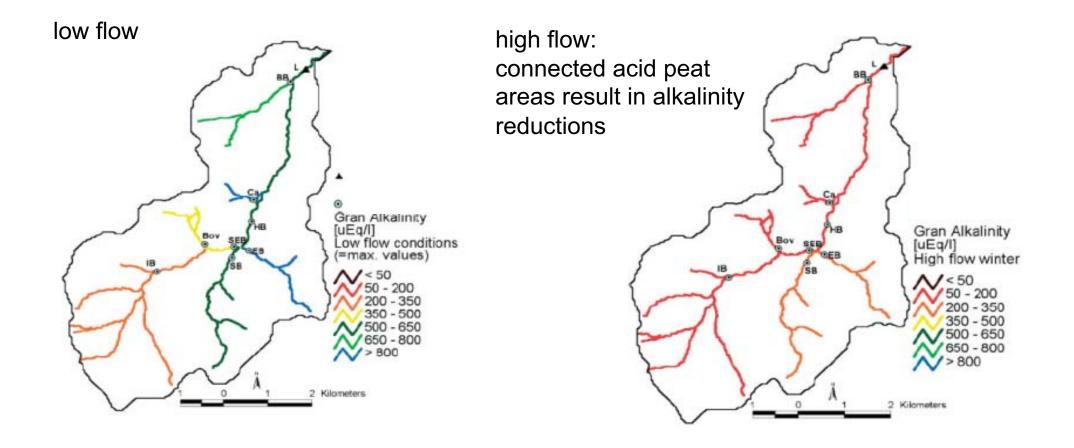
FREIBURG

Hillslope-Channel Connectivity: Recent Studies

- Ali and Roy (2009): experimental designs to detect connectivity patterns
- Bachmair and Weiler (2010): **Connect/react** concept
- Tetzlaff et al. (2007): Runoff contributing area connectivity (proxy = alkalinity)
- Jencso et al. (2009): Duration of hillslope-riparian-stream connectivity

www.hydro.uni-freiburg.de

FREIBURG


Connect/React

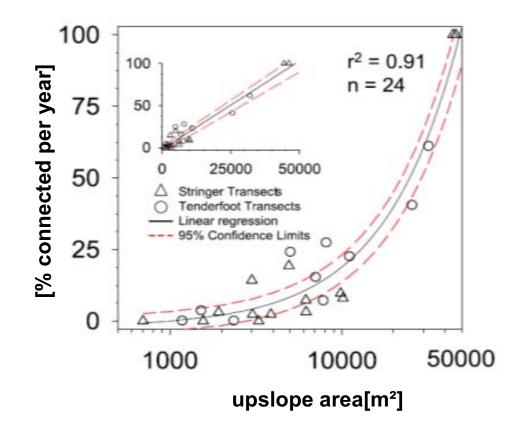
- HYDROLOGIE FREIBURG
- Concept analogy to fill/spill (Tromp-van Meerveld and McDonnell, 2006)
- Initiation of hydrologically active areas
 - Surface flow areas (rainfall intensity exceeding the infiltration capacity, surface sealing, hydrophobicity, structural features,...)
 - Saturated soil patches (surface and bedrock topography variation, microtopography, vegetation funnelling above-and below-ground,...)
 - High permeability subsurface features (decayed roots, or animal burrows,...)
- Interconnection of hydrologically active areas
 - Internal network flow (Sidle et al., 2000; Uchida et al., 2001)
 - Connection of different types of hydrologically-active areas (e.g. flow in high-permeability features interconnected via saturated soil patches (Anderson et al., 2008)
- Stream flow contribution reaction after connection
 - Legacy: Established active areas and network reoccur in next storms (finger-flow, Ritsema and Dekker, 2000; soil water content, Western et al., 2001)

Hillslope-Channel Connectivity: Recent Studies

Tetzlaff et al. (2007): Runoff contributing area connectivity (proxy = alkalinity)



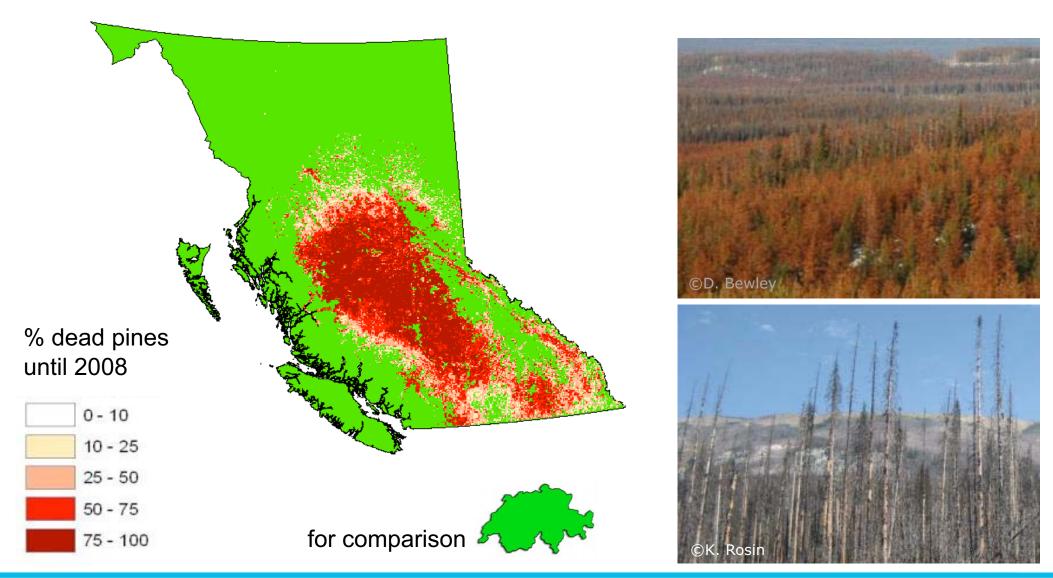
Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de


FREIBURG

Hillslope-Channel Connectivity: Recent Studies

Jencso et al. (2009): **Duration** of hillslope-riparian-stream connectivity

24 transects (6 wells per transect) subsurface flow dominated watershed fairly impermeable bedrock



FREIBURG

Example: Connectivity Simulations

Project background: Mountain Pine Beetle Infestation in British Columbia

Institut für Hydrologie, Albert-Ludwigs-Universität FreiburgFahnenbergplatzhydrology@hydrology.uni-freiburg.deD-79098 Freiburgwww.hydro.uni-freiburg.de

Area Delineation

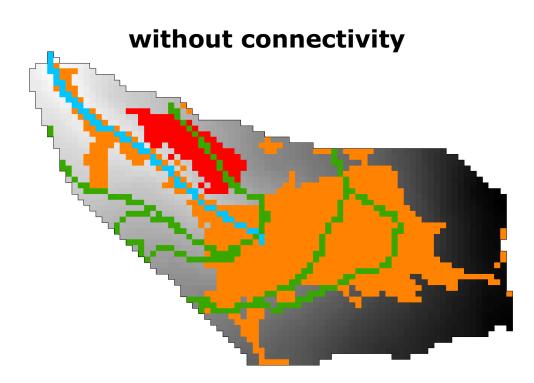
- Parsimonious DRP area delineation criteria (due to lack of soil data)
- Evaluation with over 400 soil samples, indicator plant and morphology analyses

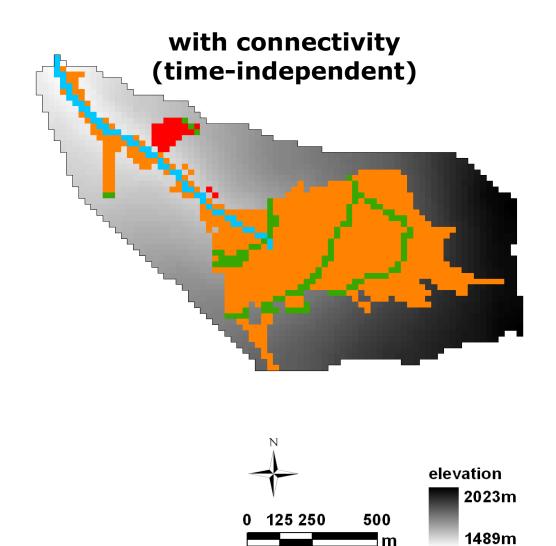
Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

FREIBURG

FREIBURG HYDROLOGIE runoff coefficient (RC) process models models HOF HOF infiltration threshold HOF-RC SOF storage = f(topo SOF index, distance to groundwater) SOF-RC SSF SSF lateral to vertical flow = f(slope) SSF-RC




Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

Source Area Connectivity

Time independent connectivity (along flow paths)

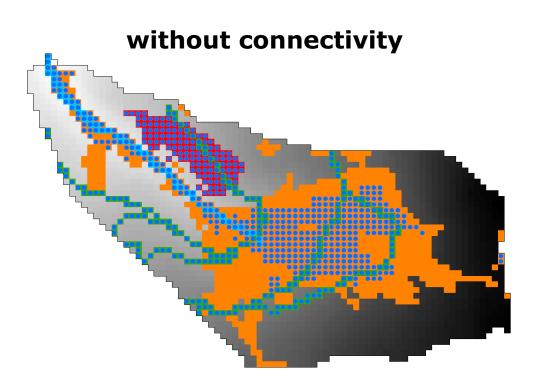
Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

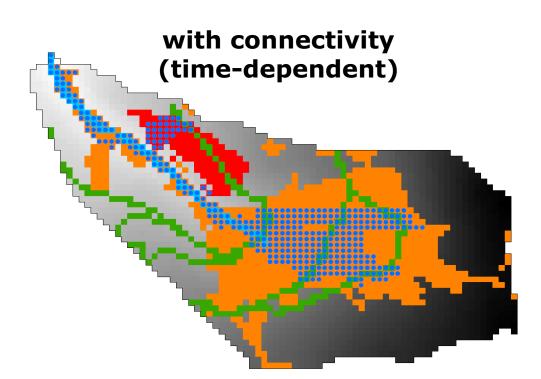
Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

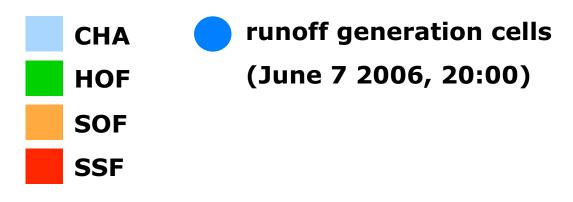
FREIBURG

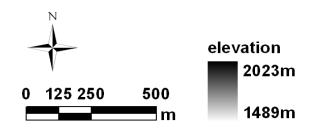
HYDROLOGIE

CHA


HOF


SOF


SSF


Source Area Connectivity

Time **dependent** connectivity (along flow paths)

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

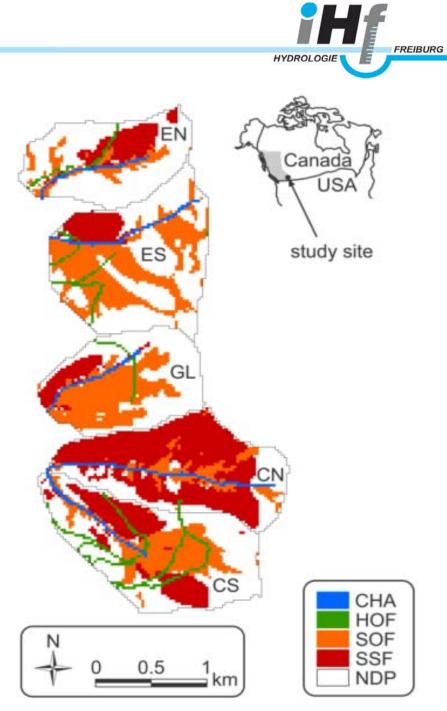
FREIBURG

model	model structure		connectivity		
	runoff coefficients	process models	no	time -independent	time -dependent
M1					
M3					
M5					
M2					
M4					
M6					

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

Research Questions


- Considering connectivity: what is the effect on contributing areas?
- Does the model improve when connectivity is incorporated?
- Are some runoff generation processes more affected by considering connectivity than others?
- What are the computational **costs** of including connectivity?
- Evaluation for different
 - model structures
 - watersheds
 - storm types (rain on snow, snow melt, rain)

Methods: Study Area

	area [km²]	median flow path gradient [-]	median flow path length [m]
EN	1.03	0.23	337
ES	1.64	0.20	482
GL	1.13	0.22	562
CN	1.46	0.31	314
CS	1.57	0.27	505

ALBERT-LUDWIGS UNIVERSITÄT FREIBURG

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

Study Area: Previous Simulations

- Simulation with a distributed hydrologic model (DHSVM, 2004 2008, hourly)
- Calibrated and validated to spatial snow surveys (19 snow sampling transects)
- Jost et al. 2007. The influence of forest and topography on snow accumulation and melt at the watershed-scale. Journal of Hydrology.
- Fairly accurate spatial-temporal input pattern

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

FREIBURG

Methods

Storm types

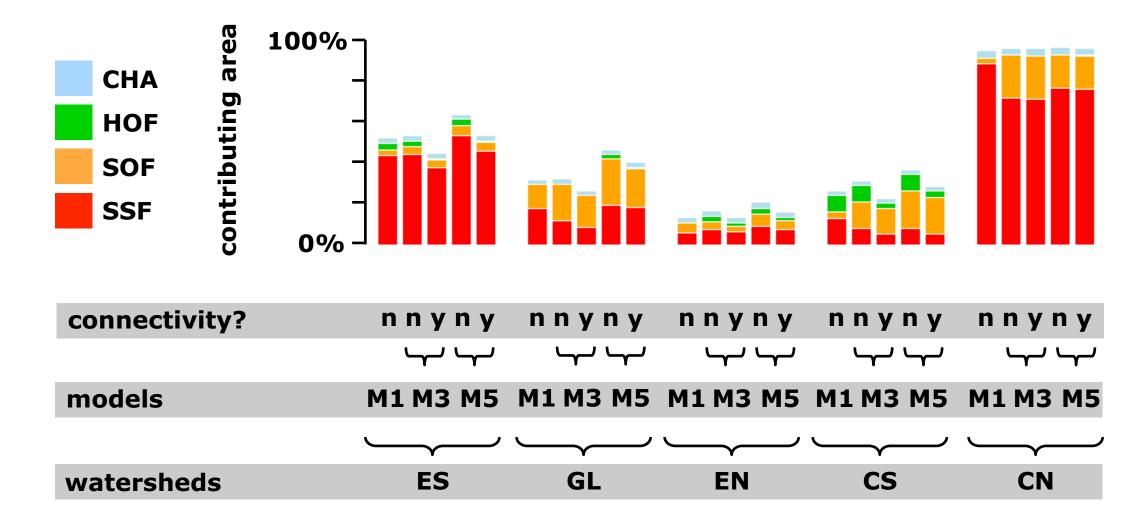
- > rain
- snow melt
- rain on snow
- unforced runoff

Mar Apr May Jun Jul Aug Sep Oct

- Optimization: GENOUD (GENetic Optimization Using Derivatives)
- Regional sensitivity analysis: Sobol, Morris
- Uncertainty analysis: GLUE
- 25m x 25m grid cells, 4h time step, year 2006

FREIBURG

Results


Considering connectivity: what is the effect on contributing areas?

- Does the **model improve** when connectivity is considered?

www.hydro.uni-freiburg.de

Effect on Contributing Areas

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

FREIBURG

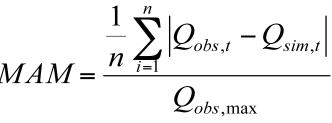
Effect on Contributing Areas

- Redistribution toward locations along flowpaths
- Example: CS watershed, NSE/rain on snow-optimized parameters of model M4

Fahnenbergplatz D-79098 Freiburg

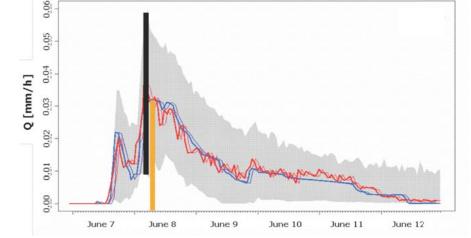
Results

- Does the model improve when connectivity is considered?


www.hydro.uni-freiburg.de

Model Improvement with Connectivity?

FREIBURG

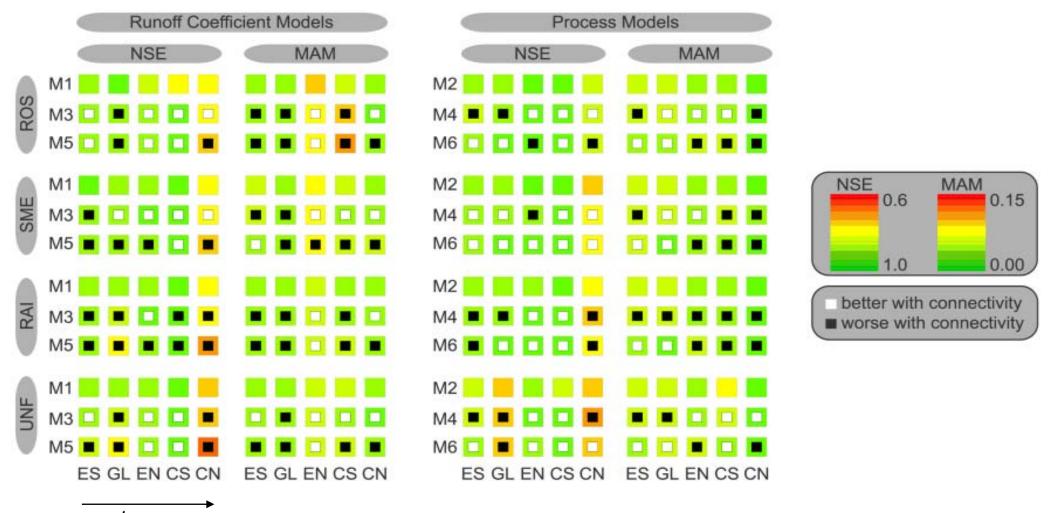

Fit of simulated and observed runoff?

$NSE = 1 - \frac{\sum_{t=1}^{n} \left(Q_{obs,t} - Q_{sim,t} \right)}{\sum_{t=1}^{n} \left(Q_{obs,t} - \overline{Q_{obs}} \right)} \qquad MAM = \frac{\frac{1}{n} \sum_{i=1}^{n} \left| Q_{obs,t} - Q_{sim,t} \right|}{Q_{obs,max}}$

Model prediction uncertainty

relative range at peak =

Feasible parameter ranges (comparison with previous defined parameter ranges; sensitive parameters only)

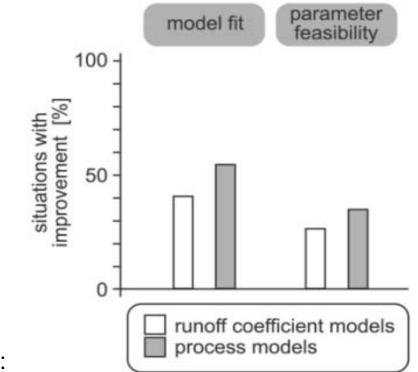


Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

Model Fit

steeper watersheds


ALBERT-LUDWIGS

UNIVERSITÄT FREIBURG

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

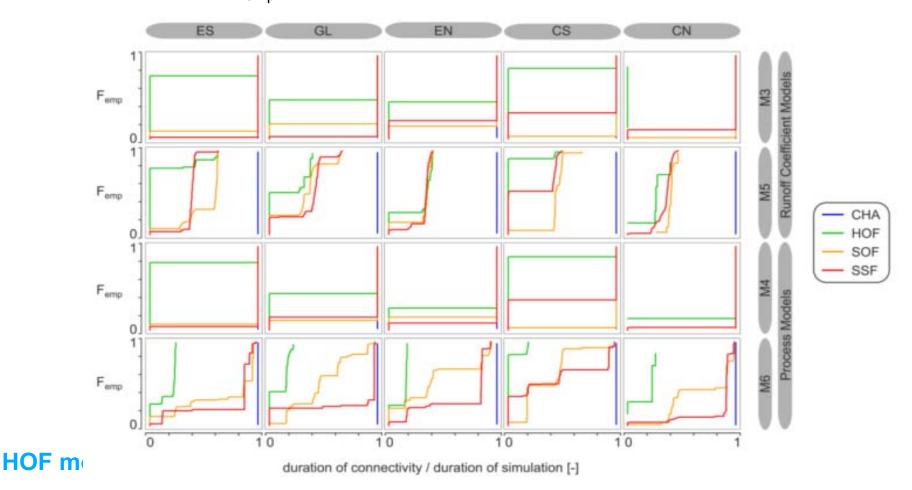
Fahnenbergplatz D-79098 Freiburg

No effects among:

- watersheds
- storm types
- > objective functions

FREIBURG

Results


- Does the model improve when connectivity is considered?
- Are some runoff generation processes more affected by considering connectivity than others?

www.hydro.uni-freiburg.de

Temporal Connectivity

Empirical distribution F_{emp} of the average duration of connectivity for each grid cell

More gradual temporal distributions (e.g. for SOF) with model M6 compared to M5

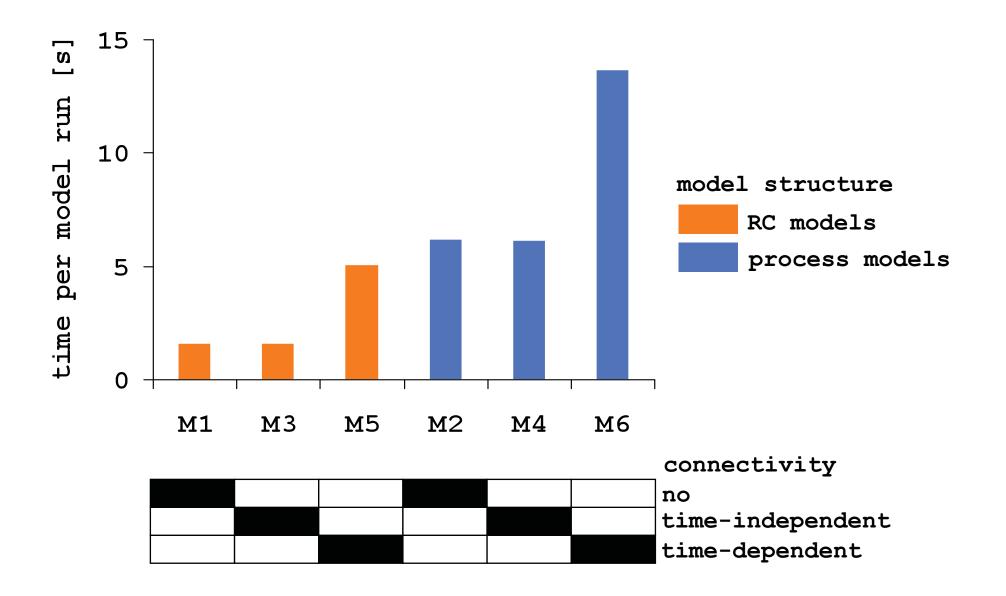
 Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

 Fahnenbergplatz
 hydrology@hydrology.uni-freiburg.de

 D-79098 Freiburg
 www.hydro.uni-freiburg.de

FREIBURG

Results


- Considering connectivity: what is the effect on **contributing areas**?
- Does the model improve when connectivity is considered?
- Are some runoff generation processes more affected by considering connectivity than others?
- What are the computational costs of incorporating connectivity?

www.hydro.uni-freiburg.de

D-79098 Freiburg

Computational Costs

FREIBURG

Conclusions

- 1) Redistribution of contributing areas along flowpaths
- 2) HOF is more affected by introducing connectivity than SOF and SSF
- 3) With connectivity: No consistent trends for different
 - storm types
 - watersheds
 - objective functions
- 4) Introducing connectivity makes more sense for process models than for runoff coefficient models.

FREIBURG

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

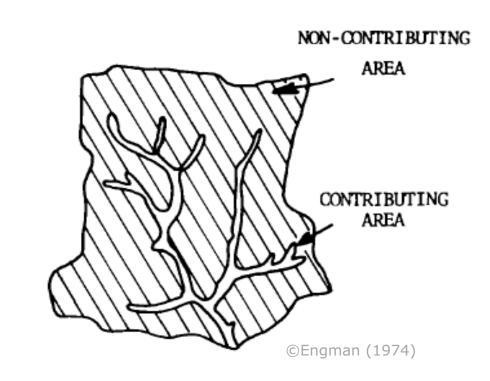
Fahnenbergplatz D-79098 Freiburg

- Process understanding:
 - Interconnection of different types of hydrologically active areas?
 - Legacy/memory of interconnections?
 - Connectivity impediments/barriers?
- Connectivity simulation:
 - Model evaluation?
 - Input/parameter/model structure uncertainty?
 - parsimony vs. complexity: Cell-to-cell algorithms? Process specific connectivity predictions? Dynamic DRP area delineation toward VSA?

FREIBURG

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

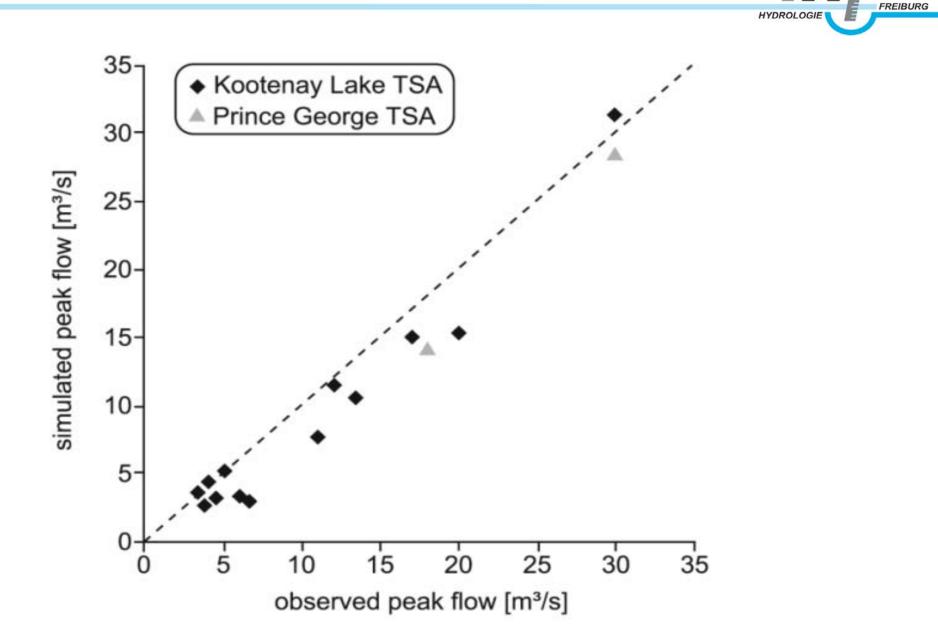

Fundamental Concepts

- Cappus (1960)
 - 'ruissellement superficiel', 'ruissellement hypodermique', 'écoulement souterrain de crue' (overland, near surface, subsurface storm flow)
- Betson (1964)
 - runoff contribution only from certain areas in a watershed
 - partial contributing area concept
- Hewlett and Hibbert (1967)
 - contributing areas in a watershed vary during and among storms
 - variable source area concept (VSA)
- Engman (1974)

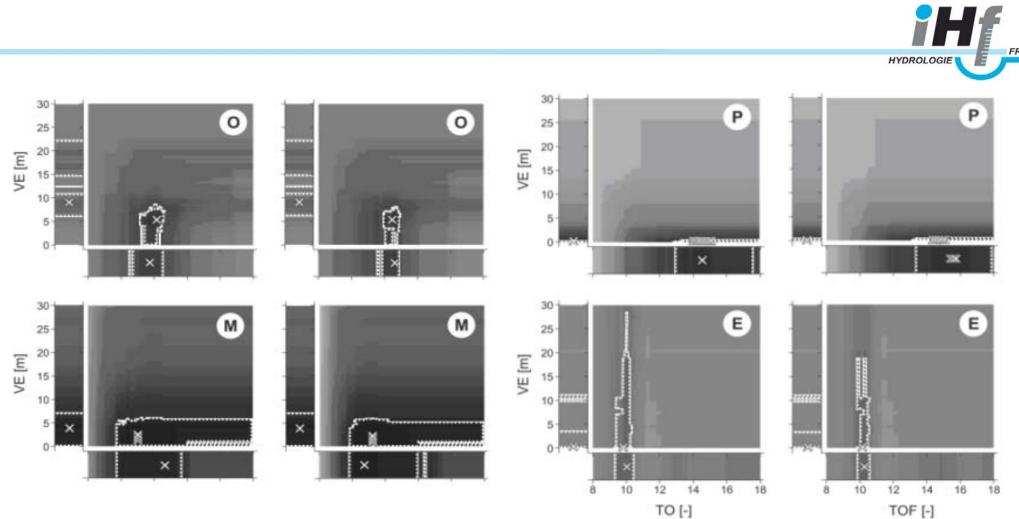
ALBERT-LUDWIGS

UNIVERSITÄT FREIBURG

hydrologically active and passive areas within a watershed



Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de


FREIBURG

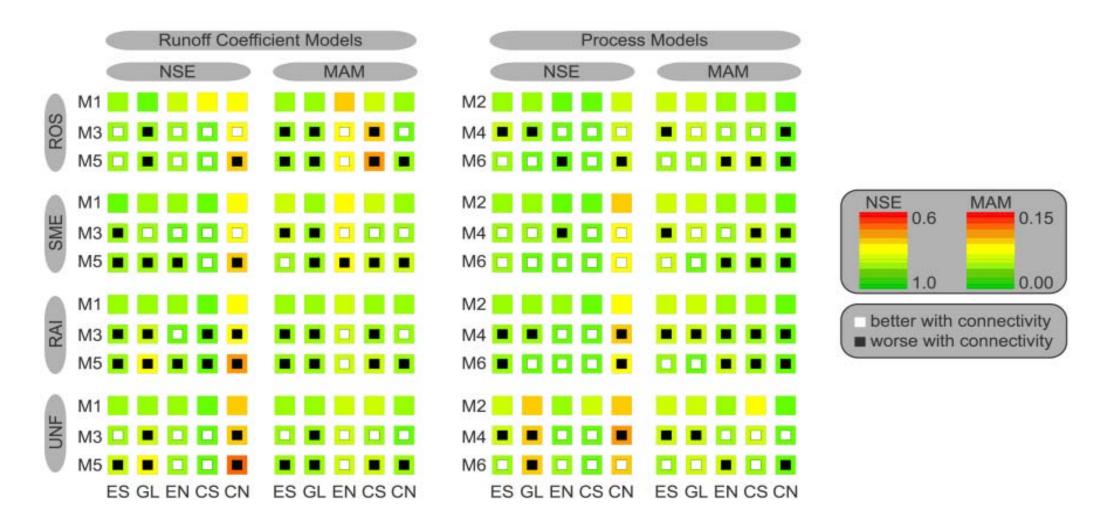
HYDROLOGIE

Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

TOF [-]

AGR 1.0	MAX
0.8	×
0.6	AGR (MAX - 0.05)
0.4	*****
0.2	Watersheds
0.0	O, M, P, E

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg


Fahnenbergplatz D-79098 Freiburg

hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

FREIBURG

HYDROLOGIE

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

FREIBURG

HYDROLOGIE

Sensitivity Analysis

			ES			GL			EN			CS			CN	
		Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol	Morris Sobol
	TOPO	M1	M3	M5	M1	M3	M5	M1 ○ ●	M3	M5	M1	M3	M5	M1 ○ ●	M3	M5
runoff coefficient models	VERT GTS CHA-RC HOF-RC SOF-RC SSF-RC OF-FV SF-FV	● 0 ● 0 0 0 0 0 0 0 0 0 0 0 0 0	 ○ ○<	● 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			000000000000000000000000000000000000000									
	ТОРО	M2	M4	M6	M2 • 0	M4 • 0	M6 • •	M2	M4 0 0	M6 0 0	M2	M4	M6	M2	M4 0 0	M6 0 0
process models	VERT GTS CHA-RC HOF-TH SOF-UP SSF-UP							• 0 • 0 • 0 • 0 • 0 • 0 • 0		• 0 • 0 0 0 0 0 0 0 0 0		00 00 00 00 00	• 0 • 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		000000 00000 0000
	SSF-CF K-DRP OF-FV SF-FV	00 00 00	000000	0000000		000000	0000000		• 0 0 0 0 0 0 0				• 0 0 0 0 0 0 0		• 0 0 0 0 0 0 0	● 0 0 0 0 0

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg


Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

H

HYDROLOGIE

FREIBURG

HYDROLOGIE

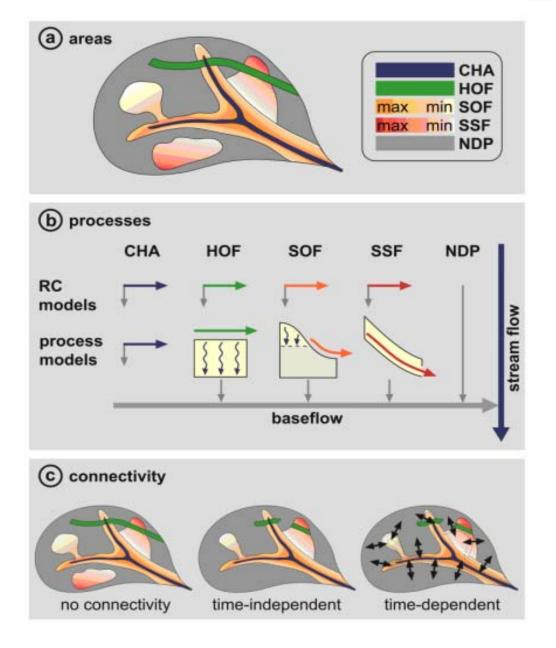
	4												P	roo	285	s N	Aoc.	ieł	8												Þ
	4						N	ISI	E														N	A	M						>
TOPO GTS SSF-UP SSF-CF																															
TOPO GTS SSF-UP SSF-CF																															
TOPO GTS SSF-UP SSF-CF																						-								-	
TOPO GTS SSF-UP SSF-CF																															
Model	2	4 ES	6	2	4 GE	6	2	4 IN	6	2	4	6	2	4 CN	6		2	4	6	2	4 SL	6	2	4 EN	6	2	4	6	2	4 EN	6

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

Concepts

- Fill / spill (Tromp-van Meerveld and McDonnell, 2006)
 - Bedrock depressions fill up during a rainfall event
 - Water spills over the bedrock ridges and contributes to hillslope outflow
 - Steeper overall gradient results in lower bedrock pool volume
 - Non-linear response characteristics: timing/spatial distribution of water flow altered (Hopp and McDonnell, 2009)
- **Connect / react** (Bachmair and Weiler, 2010)
 - Speculation: Non-linear hillslope response characteristics due to connectivity?
 - Potential interconnection of hydrologically active areas.

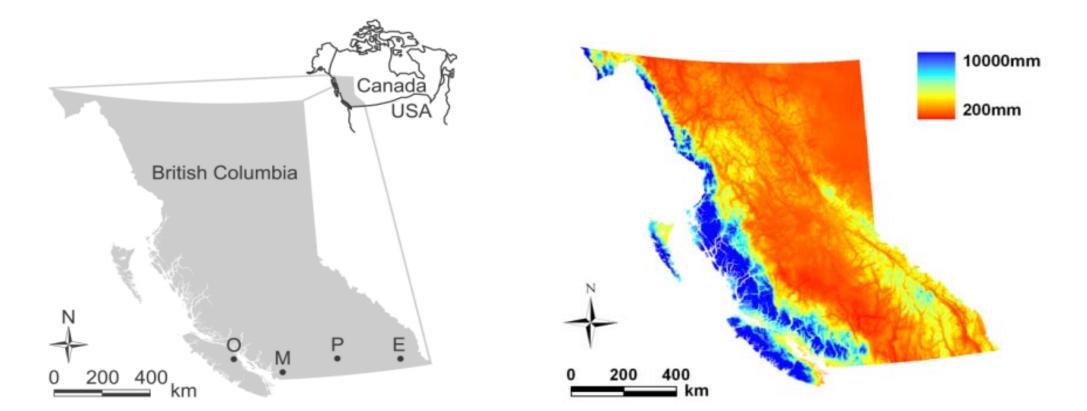

Konnektivität

HYDROLOGIE

FREIBURG

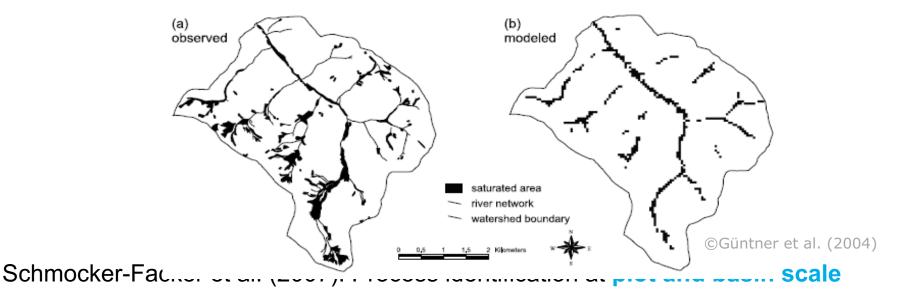
Methoden

- Flächenausscheidung
- Prozesse
- Konnektivität



Fahnenbergplatz D-79098 Freiburg

mean annual precipitation (1961-1990)

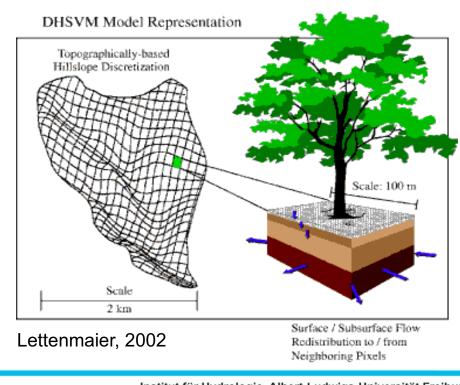


Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

Recent Research

- Scherrer and Naef (2003): Dominant process identification with decision trees
- Markart et al. (2004): Field guidance for surface coefficient estimation
- Güntner et al. (2004): Evaluation of predicted saturation patterns


- Chifflard et al. (2008): Relevance of periglacial cover beds for runoff generation
- Meissl et al. (2009): Runoff response guidelines for small, alpine watersheds
- Jencso et al. (2009): Connectivity between hillslopes, riparian areas, streams

FREIBURG

DHSVM

- Distributed Hydrology Soil Vegetation Model
- Mark Wigmosta (University of Washington, early 1990s)
- Effects of topography and vegetation on water fluxes
- Often used for mountainous watersheds in the Pacific Northwest of the US

Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg

Fahnenbergplatz D-79098 Freiburg

hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

1-D Vertical Water Balance

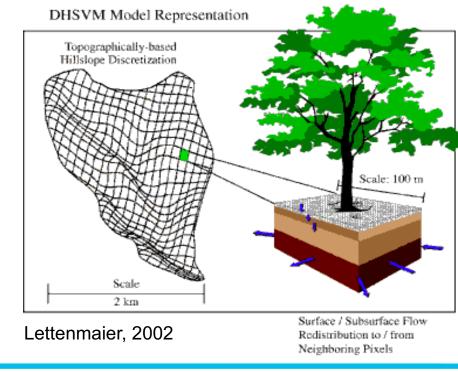
DHSVM: Output

ALBERT-LUDWIGS UNIVERSITÄT FREIBURG

	F
	FREIBURG
HYDROLOGIE	

101Evap.ETot	Evapotranspiratior (Total)	ⁿ m/timester	Total amount of evapotranspiration
102Evap.EPot	Potential Evapotranspiratior	m/timester	Potential evaporation/transpiration
103Evap.EInt	Interception Evaporation		Evaporation from interception
104Evap.ESoil	Not implemented yet	m/timester	oNot implemented yet
105Evap.EAct	Evaporation	m/timester	Actual evaporation/transpiration
201Precip	Precipitation	m/timester	oPrecipitation
202Precip.IntRain	Interception Storage (liquid)	m	Interception storage (liquid)
203Precip.IntSnow	Interception Storage (frozen)	m	Interception storage (frozen)
301Rad.Beam	Incoming Direct Radiation	W/m ²	Direct beam solar radiation
302Rad.Diffuse	Incoming Diffuse Radiation	W/m ²	Diffuse solar radiation
401Snow.HasSnow	Snow Presence/Absence	-	Snow cover flag
402Snow.SnowCoverOve	Overstory Snow Flag	-	Flag overstory can be covered
403Snow.LastSnow	Last Snowfall	days	Days since last snowfall
404Snow.Swq	Snow Water Equivalent	m	Snow water equivalent
405Snow.Melt	Snow Melt	m/timester	oSnow Melt

406Snow.PackWater	Liquid Water Content (Deep Layer)	m	Liquid water content of snow pack
407Snow.TPack	Snow Temperature (Deep Layer)	°C	Temperature of snow pack
408Snow.SurfWater	Liquid Water Content (Surface Layer)	m	Liquid water content of surface layer
409Snow.TSurf	Snow Temperature (Surface Layer)	°C	Temperature of snow pack surface layer
410Snow.ColdContent	Snow Cold Content	J	Cold content of snow pack
501Soil.Moist	Soil Moisture Content	-	Soil moisture for layer % d
502Soil.Perc	Percolation	m/timestep	Percolation
503Soil.TableDepth	Water Table Depth	m below surface	Depth of water table
503Soil.TableDepth 504Soil.NetFlux	Water Table Depth Net Water Flux		Depth of water table Net flux of water
· .			-
504Soil.NetFlux	Net Water Flux Surface	m/timestep	Net flux of water
504Soil.NetFlux 505Soil.TSurf	Net Water Flux Surface Temperature	m/timestep °C W/m ²	Net flux of water Soil surface temperature Net radiation exchange
504Soil.NetFlux 505Soil.TSurf 506Soil.Qnet	Net Water Flux Surface Temperature Net Radiation	m/timestep °C W/m ²	Net flux of water Soil surface temperature Net radiation exchange at surface



Fahnenbergplatz D-79098 Freiburg

- Sediment Model Configuration file
- Configuration file for DHSVM 2.0 and below
- Mask file Note: 2-D data binary files are stored from NW->SE, incrementing across columns before down rows
- <u>DEM file</u>
- Soil type file
- Soil depth file
- Vegetation type file
- Meteorological station file
- Meteorological map files
- PRISM files
- Shading parameter files
- Wind model files
- <u>Stream/road class files</u>
- <u>Stream/road network files</u>
- Stream/road map files
- Travel time file
- Unit hydrograph file

To initialize the model, a number of model state files are required as well:

- Soil state file
- Snow state file
- Interception state file
- <u>Channel state file</u>
- Hydrograph state file

Fahnenbergplatz D-79098 Freiburg hydrology@hydrology.uni-freiburg.de www.hydro.uni-freiburg.de

1-D Vertical Water Balance

