High frequency, realtime measurements of stable isotopes in liquid water

Barbara Herbstritt, Benjamin Gralher and Markus Weiler

HYDROLOGY

Introduction

- Isotope studies are still a trade-off between limited spatio-temporal resolution and extensive lab work
- In conventional isotope analytics a significant time lag exists between sampling and data acquisition (unlike EC or T measurements)
- Laser-based analyzers are now available and capable of measuring stable water isotopes in the vapor phase directly and continuously

Challenge: **Convert liquid water** to water vapor and continuously provide it to analyzer

Conclusion

- Hydrophobic membranes may have specific isotopic fractionation factors
- The proposed method provides real-time data and captures even abrupt changes
 - Response time: about 10s (depending on setup dimensions and flow rates)
 - **Resolution**: minutes or below
 - **Precision**: comparable to conventional analysis (0.16% for δ^{18} O, 1.1% for δ^{2} H)
 - Supervision: minimum requirements
 - Restrictions: water temperature must not exceed ambient temperature (else: heating / dilution)

Possible future applications

Suitable wherever dynamic processes have to be observed in real time and with high temporal resolution

temperature [°C]

temperature [°C]