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1. Motivation

Despite the variety of existing hydrological models,
low flow prediction is still challenging. Traditionally
low flow is predicted by a function of subsurface sto-
rage depletion. Thus, model structures are assumed
to incorporate different storages, namely aquifer
types and their characteristics. Most often operational

low flow prediction is based on a single storage-outflow
model, whose parameters are calibrated regardless of

what might be known about the catchments’ geclogy and
‘aquifer composition, We argue that linking model struc-

tures to the characteristic compositions of aquifer types in
‘a catchment will improve low flow prediction.

2. Objectives

* To systematically evaluate structural differences of storage-
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? conceptual storage-outflow models

each with only 2 parameters

Parameter 1. storage coefficient K.

Parameter 2: storage coefficient K, or shape/function
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The role of seasonal recharge and storage concepts for low flow

Storage concepts &
aquifer compostion

4 exemplary best model runs (MARE):
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* Fractured aquifers (as

prime example for storage
bypass) can be classified

——ia-

H as more quickly respondi-

ng or . flashy” catchments

ILINEAR-BYFASS e Porous and karstic aqui-
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fers with higher BFI's have
a smaller ,bypass”- pro-
portion

®* The . flexible” storage con-
cept indicated that for many
catchments a ,faster” sto-
rage depeltion can be assu-
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hamic storage volume

* | arger thresholds are correla-

ted with smalller storage co-

efficients
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| & Forous
Y b @ Complex
5 O higher BFI
Eal - O lower BFI

¥

* Storage coefficents K and K, depend di-

rectly on the particular received recharge
rate («50% and =50%)

* Fractured and complex aquifers show both
high recharge rates into the ,faster” sto-

rage

* Fractured aquifers lead to larger diffe-
rences between both storage coefficients
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* This concept helps to separate slower and
faster storages for different aquifer types

* Mainly fractured catchments are assumed
to have one ,faster” storage

* | ower BFI values {smaller symbols) are

more correlated with distinguishable sto-
rage types (fast/slow)

mend above 100-150 mm dy-
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Recharge bypasses the starage [%]

© Evaluation of

storage concepts

The storage concepts are evaluated by
relating NSE and MARE values for each
catchment to performance ranks (1=best
model, 9=poorest model). With this rank-
matrix mean ranks for different aquifer

5 - types are calculated (with MARE).
i A 4 For example, for 8 mainly fractured catch-
e ments (blule) the mean rank for the FLEX-
o Ao b 3K model is 1.2.
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8 ® Structural differences of storage con-
G ® cepts lead to clearly distinguishable
S @ storage-outflow characteristics for dif-
50.15 - ferent aquifer compositions
= » Consequently, to improve low flow pre-
g 1T diction a storage-outflow model has to
incoporate aquifer composition
e Seasonality of storage coefficients de-
pends on aquifer types

Strearmflow data were provided by the Environment Agency of the German state of Baden-Wrttember g (LUBWY,
Fecharge time series were calculated with TRAIN -GN by Hydros Consult, Fretburg,
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