

Large Scale Modeling of Biocides to Groundwater

What happens to biocide emissions at the district level

- Biocides are used as film protection products in paints and renders in facades wash off and enter the environment where they can have adverse impacts on the ecosystem
- Stormwater infiltration systems such as swale-trench systems are an entry pathway for biocides to groundwater
- Other possible pathways of biocide entry to groundwater

 Limited knowledge of biocide input to groundwater at larger scale

- Where do biocides enter groundwater?
- What amount of biocides is retained in the swaletrench systems?
- How are biocides transported and degraded in the saturated zone?

Methods: Model chain from facades to groundwater

Biocide emission model "COMLEAM" [1]

- Calculates biocide emissions from facades [g/day]
- Biocide terbutryn modeled based on previous measurements and common use
- Initial concentrations of terbutryn estimated

Rainfall-runoff model "RoGeR WB Urban" [2]

 Calculates urban water balance and groundwater recharge [mm]

Same time period as biocide leaching model

Buildings and surface areas mapped on the ground

Groundwater model

"MODFLOW" [3]

- Calculates biocide infiltration and transport in groundwater [g]
- Calibrated with data from chlorinated hydrocarbons measurements

Study Area

City of Freiburg District Vauban

Eco-district of 38ha built since 2000

- Green district with mostly residential buildings, solar panels and green roofs
- District with sustainable stormwater management
- Numerous urban groundwater monitoring wells exist due to a contamination with chlorinated hydrocarbons (CHC)

Measurements in groundwater _

Data for 2015-2017 from Hensen et al. 2018 [4] and for 2019-2022: own measurements

Results: Output of model chain

Modelling results confirm groundwater monitoring data

- Biocides enter the shallow groundwater via the swale-trench system. This is confirmed by higher terbutryn concentrations downgradient than upgradient of the swale-trench system. There are also other pathways for terbutryn to enter groundwater.
- Retention capacity of biocides in swale-trench systems is limited due to shallow groundwater levels
- Results suggest degradation and sorption of biocides in swaletrench systems although future studies are required.

Implications

- Model approach is a useful tool to investigate biocide emissions and transport to groundwater at a larger scale
- Measures to prevent groundwater contamination are most efficient at the source

Next steps

- Calculate different scenarios with varying initial biocide use
- Vary amount of diffuse biocide losses within the district
- Include transformation products

Authors: Felicia Linke^{1, 2}, Felix Zimmermann¹, and Jens Lange¹

¹ Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, 79098 Freiburg, Germany ² Sedimentary Geology and Quaternary Research, Faculty of Environment and Natural Resources, University of Freiburg, 79104 Freiburg, Germany

Fonds européen de développement régional

Literature

[1] Burkhardt, M., Gehrig, S., Rohr, M., and Tietje, O.: Auswaschung von Bioziden aus Bauprodukten und Exposition in der Umwelt: Berechnung von ESD-Szenarien und Modellierung mit der Software COMLEAM, Im Auftrag des Bundesamtes für Umwelt (BAFU), Rapperswil, 86 pp., 2021

[2] Steinbrich, A., Leistert, H., and Weiler, M.: RoGeR – ein bodenhydrologisches Modell für die Beantwortung einer Vielzahl hydrologischer Fragen, Korrespondenz Wasserwirtschaft, 14, 94–101, 2021. [3] Harbaugh, A. W.: MODFLOW- the U.S. Geological Survey modular ground-water model -- the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16, 2005.

[4] Hensen, B., Lange, J., Jackisch, N., Zieger, F., Olsson, O., and Kümmerer, K.: Entry of biocides and their transformation products into groundwater via urban stormwater infiltration systems, Water research, 144, 413-423, doi:10.1016/j.watres.2018.07.046, 2018.

[5] Zimmermann, F.: Grundwassermodellierung im Stadtteil Vauban unter Berücksichtigung des Biozideintrags, Master Thesis, Chair of Hydrology, University of Freiburg, Freiburg, 87 pp., 2021.

freiburg.de

