# Status and stresses:

Kathrin Szillat, Kerstin Stahl, Jost Hellwig, Max Schmit











Contact: kathrin.szillat@hydrology.uni-freiburg.de

## Background

- Almost 75 % of drinking water originates from groundwater (Umweltbundesamt, 2022).
- Various stress factors affect significantly the quality and quantity of groundwater resources.
- Combined effects of climate change and diverse physical and social factors pose a central challenge for current and future drinking water supply.
- To address this challenge, a good understanding of the varieties of situations needs to support tools and decision-making frameworks to manage groundwater sustainably and ensure resilient drinking
- Achieving sustainable drinking water management requires a systematic analysis of the heterogeneous natural, politicalregulatory, and agro-economic conditions to identify transferable success factors.

## Research question

- How are drinking water protection areas in Germany characterized?
- What are the differences from an administrative point of view?

### Data

- Creation of unique dataset for all drinking water protection/abstraction areas in Germany.
- Collection and preprocessing of publicly accessible data.
- Spatial dataset quantifies numerous potential characteristics and stress factors (m) for each of the (n) drinking water protection areas.
- Factors included are:
- hydrogeology and aquifer type
- groundwater recharge and precipitation



- elevation
- land use types: 🚟 📯
- agriculture: livestock farming (রাট্রী) and different crop types( 🕍 🕸 )
- human influence: water extraction rates, population density, population with connection to public water supply, water consumption, water costs
- water quality: water framework directive (WFD, 2022) chemical status, EEA nitrate groundwater measurements 2018-2021
- water quantity: drought response times, WFD quantitative status

- Correlation of data: Pearson parametric correlation test
- Cluster analysis:

**Methods** 

Dissimilarity matrix: The dataset exists of numerical and categorical variables. As input for the cluster analysis we therefore use the dissimilarity coefficient of Gower (1971):

$$d_{wG,ij} = \frac{\sum_{t=1}^{p} \delta_{ijt} d_{ijt} w_{t}}{\sum_{t=1}^{p} \delta_{ijt} w_{t}}$$

Hierarchical Clustering with Ward's minimum variance method: minimizing the total withincluster variance.

Average silhouette method: The optimal number of clusters k is the one that maximize the average silhouette over a range of possible values for k. It evaluates the relative closeness of the individual entities to their clusters (Kaufman and Rousseeuw, 1990).

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

## Results: administrative point of view

- Germany has 16 federal states.
- All federal states have their own state water law. There is no standard regulation for the designation of water protection areas.
- ◆ In our study we identified 11.406 drinking water protection and water abstraction areas, covering 14 % of the total area of Germany.





<sup>2</sup> Hellwig et al. (2020)



## Results: data perspective

We identified 8 different drinking water situations in Germany.

#### Cluster variables



#### Cluster characteristics

+ (high) - (low)

#### Karst/fissured aquifer:

Good chemical status:



drought response time -, groundwater recharge +,



groundwater recharge -, irrigation +



groundwater recharge +

Poor chemical status:



drought response time +, population density -, water costs +, irrigation -

#### Porous aquifer:

Good chemical status:



drought response time -, groundwater recharge +



drought response time -, irrigation +

Poor chemical status:



groundwater extraction +. groundwater recharge -.



drought response time +, water costs +, elevation range -, irrigation -

## Outlook

porous aquifer or

chemical status

karst/fissured aquifer

agricultural statistics:

percentage of irrigated

area (1-6 categories)

- Statistical model for characterizing clusters
- Regression analysis to identify main stress factors
- Building on this study with model developments in the "LURCH-StressRes" project, we later aim to develop transferable stress tests for the identified typical situations across Germany to inform adaptation and best practices for achieving sustainable nationwide drinking water management





universität freiburg







Bundesministeriun